Spectral and mass characterization of kinetic conversion from retinoids to retinoic acid in an in vitro 3-D human skin equivalent model
To investigate the effect of retinoids, such as retinol (ROL), retinal (RAL), and retinyl palmitate (RP), on epidermal integrity, skin deposition, and bioconversion to retinoic acid (RA). 3-D human skin equivalent model (EpiDermFT™) was used. Epidermal cellular integrity measured by TEER values was significantly higher for a topical treatment of ROL and RAL than RP (p < 0.05). The skin deposition (μM) of ROL and RAL was approximately 269.54 ± 73.94 and 211.35 ± 20.96, respectively, greater than that of RP (63.70 ± 37.97) over 2 h incubation. Spectral changes were revealed that the C––O maximum absorbance occurred between 1600~1800 cm− 1 and was greater from ROL than that from RAL and RP, indicating conjugation of R–OH to R-CHO or R-COOH could strongly occur after ROL treatment. Subsequently, a metabolite from the bioconversion of ROL and RAL was identified as RA, which has a product ion of m/z 283.06, by using liquid a chromatography-mass spectrometry (LC-MS) – total ion chromatogram (TIC). The amount of bioconversion from ROL and RAL to RA in artificial skin was 0.68 ± 0.13 and 0.70 ± 0.10 μM at 2 h and 0.60 ± 0.04 and 0.57 ± 0.06 μM at 24 h, respectively. RA was not detected in the skin and the receiver compartment after RP treatment. ROL could be a useful dermatological ingredient to maintain epidermal integrity more effectively, more stably deposit on the skin, and more steadily metabolize to RA than other retinoids such as RAL and RP.
EpiDermFT (EFT-400), skin metabolism, TEER, retinoids, retinal, retinol, retinoic acid, retinyl palmitate, retinaldehyde, Vitamin A analogs, skin absorption, skin deposition, bioconversion
Retinal, retinol, retinoic acid, retinyl palmitate, retinaldehyde
Request a copy of this paper, click here.